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SUMMARY

We present an overview of how the arterial fluid mechanics problems can be modeled with the stabilized
space–time fluid–structure interaction (SSTFSI) technique developed by the Team for Advanced Flow
Simulation and Modeling (T�AFSM). The SSTFSI technique includes the enhancements introduced
recently by the T�AFSM to increase the scope, accuracy, robustness and efficiency of this class of
techniques. The SSTFSI technique is supplemented with a number of special techniques developed
for arterial fluid mechanics modeling. These include a recipe for pre-FSI computations that improve
the convergence of the FSI computations, using an estimated zero-pressure arterial geometry, and the
sequentially coupled arterial FSI (SCAFSI) technique. The recipe for pre-FSI computations is based on
the assumption that the arterial deformation during a cardiac cycle is driven mostly by the blood pressure.
The SCAFSI technique, which was introduced as an approximate FSI approach in arterial fluid mechanics,
is also based on that assumption. The need for an estimated zero-pressure arterial geometry is based on
recognizing that the patient-specific image-based geometries correspond to time-averaged blood pressure
values. In our arterial fluid mechanics modeling the arterial walls can be represented with the membrane
or continuum elements, both of which are geometrically nonlinear, and the continuum element is made of
hyperelastic (Fung) material. Test computations are presented for cerebral and abdominal aortic aneurysms,
where the arterial geometries used in the computations are close approximations to the patient-specific
image-based data. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Much has been accomplished in arterial fluid mechanics modeling in recent years (see, for example,
[1–10]), and many of the computational challenges involved are being addressed with the advances
we see in computational mechanics. One of the major computational challenges is accurate and
efficient modeling of the fluid–structure interactions (FSI) between the blood flow and arterial
walls. We have been seeing a good number of articles in FSI modeling since the early 1990s (see,
for example, [3, 6, 11–43]). For most researchers the preferred method of handling the moving
interfaces involved in FSI modeling has been the arbitrary Lagrangian–Eulerian finite element
formulation [44].

For the Team for Advanced Flow Simulation and Modeling (T�AFSM),‡ the preferred method
of handling the moving interfaces involved in FSI modeling has been the deforming-spatial-
domain/stabilized space–time (DSD/SST) formulation [11–13, 19], which was introduced by
the T�AFSM in 1991 as a general-purpose interface-tracking (i.e. moving mesh) technique for
computation of flow problems with moving boundaries or interfaces. The formulation is based on
the streamline-upwind/Petrov–Galerkin (SUPG) [45, 46] and pressure-stabilizing/Petrov–Galerkin
(PSPG) [11, 47] methods. An earlier version of the pressure stabilization, for Stokes flows, was
introduced in [48]. The SST formulations were introduced and tested earlier by other researchers
in the context of problems with fixed spatial domains (see, for example, [49]).

The DSD/SST formulation and the mesh update methods [50–52] developed by the T�AFSM
are the core technologies for the space–time FSI techniques developed by the T�AFSM (see, for
example, [14, 15, 17, 22, 25, 29, 30, 36]). These space–time FSI techniques have been used in a
number of 3D FSI computations in arterial fluid mechanics (see [1, 2, 4, 5, 7]), starting with a
journal article [1] published in 2004 by the Japan Society of Mechanical Engineers. These compu-
tations mostly focused on cerebral aneurysms, with the arterial models extracted from computed
tomography. The blood was assumed to behave like a Newtonian fluid. The arterial structures
(walls) were modeled with a continuum element, which was geometrically nonlinear, made of
linearly elastic material. The coupled fluid and structural mechanics and mesh-moving equations
were solved with a block-iterative coupling technique (see [29, 30, 53] for comparative descriptions
of the block-iterative, quasi-direct and direct coupling techniques). The inflow boundary condition
used in the computations is a pulsatile velocity profile, which closely represents the measured
flow rate during a heartbeat cycle. A brief, chronological review of the computations reported
in [1, 2, 4, 5, 7] was provided in [8].

New, enhanced versions of the DSD/SST and space–time FSI techniques were recently intro-
duced in [53] to increase the scope, accuracy, robustness and efficiency of this class of techniques.
Several 3D numerical examples computed with these new SSTFSI techniques were also reported
in [53]. The new SSTFSI techniques were extended in [8] to FSI modeling in arterial fluid
mechanics. The choices for the structural models used in [53] for the arterial walls were the
membrane and continuum elements, both geometrically nonlinear, and the material-model choices
for the continuum element were linearly elastic and hyperelastic (Mooney–Rivlin) models.

Our more recent test computations showed that when the arterial wall thickness falls below
some level, the computations with the continuum element made of linearly elastic material become

‡This team name was intended to imply the research team led by Tezduyar also prior to when the team assumed
this specific name.
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unstable when the blood pressure exceeds some level. This observation is consistent with what
was pointed out to us recently by Hughes [54]—that this is not a suitable material model when
the strains are not infinitesimal, especially if there are compressive strains. Therefore, we are not
pursuing the linearly elastic material model further and instead placing even a greater emphasis on
the hyperelastic models. The results reported in [8] for the Mooney–Rivlin material, where the two
Mooney–Rivlin constants were determined in a spontaneous fashion, showed larger deformations
than the other two structural models used in [8]. In [55], for the two Mooney–Rivlin constants,
we used values determined in a more systematic way based on the test data reported in [56].
The model used in [56] involves five constants. In [55], we determined the two constants we
use based on those five parameters and the strain energy considerations. Although this made the
deformations much more comparable with those obtained with the other two structural models
used in [8], we were still not fully satisfied with using a Mooney–Rivlin material model in our
arterial fluid mechanics computations. That, and what we see in the literature, convinced us to
move to a hyperelastic material model of Fung type.

Our recent experiences with the arterial fluid mechanics computations also helped us introduce a
number of special techniques targeting specifically arterial fluid mechanics modeling. These include
using an estimated zero-pressure arterial geometry [57], a recipe for pre-FSI computations [8]
that improve the convergence of the FSI computations and the sequentially coupled arterial FSI
(SCAFSI) technique [58]. These special techniques are described in Sections 4–7.

The governing equations and the finite element formulations, including the DSD/SST and
SSTFSI techniques, are described in Sections 2 and 3. The fluid (blood) and structure (arterial
wall) properties and boundary conditions are given in Section 5. The test computations are reported
in Section 8. They are for cerebral and abdominal aortic aneurysms, where the arterial geometries
used in the computations are close approximations to the patient-specific image-based data. Our
objective in these test computations is not to conduct arterial fluid mechanics studies at a level of
detail seen in [1, 2, 4, 5, 7, 10]. Rather, our objective is to test the new SSTFSI techniques and the
special techniques targeting specifically arterial fluid mechanics and show that these techniques
can successfully deal with different types of arterial problems and structural models. Concluding
remarks are given in Section 9.

2. GOVERNING EQUATIONS

2.1. Fluid mechanics (blood flow)

Although the blood is known to be non-Newtonian in general, we are assuming it to be Newtonian
here. The explanation we give for that here has been reproduced from the explanation given in [10].
For the arterial diameters and flow rates we consider in this paper, the average shear rate in the
artery is larger than 150s−1. As it was pointed out in [10], the viscosity of the blood can be
assumed to be constant if the shear rate is high enough (>150s−1) [59].

Let �t⊂Rnsd be the spatial domain with boundary �t at time t ∈(0,T ). The subscript t indicates
the time dependence of the domain. The Navier–Stokes equations of incompressible flows are
expressed on �t and ∀t ∈(0,T ) as

�

(
�u
�t
+u·∇u−f

)
−∇·r=0 (1)

∇ ·u=0 (2)
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where �, u and f are the density, velocity and external force, respectively. The stress tensor r is
defined as r(p,u)=−pI+2�e(u), with e(u)=((∇u)+(∇u)T)/2. Here p is the pressure, I is the
identity tensor, �=�� is the viscosity � is the kinematic viscosity and e(u) is the strain-rate tensor.
The essential and natural boundary conditions for Equation (1) are represented as u=g on (�t )g
and n·r=h on (�t )h , where (�t )g and (�t )h are complementary subsets of the boundary �t ,n is
the unit normal vector, and g and h are given functions. A divergence-free velocity field u0(x) is
specified as the initial condition.

2.2. Structural mechanics (arterial wall deformation)

Let �s
t ⊂Rnxd be the spatial domain with boundary �s

t , where nxd=3 for the continuum element
and nxd=2 for the membrane element. The superscript ‘s’ indicates the structure. The parts of
�s
t corresponding to the essential and natural boundary conditions are represented by (�s

t )g and
(�s

t )h . The equations of motion are expressed as

�s
(
d2y
dt2
+�

dy
dt
−fs

)
−∇·rs=0 (3)

where �s, y, �, fs and rs are the material density, structural displacement, damping coefficient,
external force and Cauchy stress tensor, respectively. The stresses are expressed in terms of
the second Piola–Kirchoff stress tensor S, which is related to the Cauchy stress tensor through
a kinematic transformation. For the arterial structural models we cover here, what makes one
structural element model different from the other is the manner in which S is defined.

2.2.1. Membrane element. Under the assumption of large displacements and rotations, small strains
and no material damping, the membranes are characterized with linearly elastic material properties.
Under the assumption of plane stress, S becomes

Si j=(�̄
s
Gi jGkl+�s(GilG jk+GikG jl))Ekl (4)

where for the case of isotropic plane stress �̄
s=2�s�s/(�s+2�s), and the strain tensor is defined

as

Ekl= 1
2 (gkl−Gkl) (5)

Here, �s and �s are the Lamé constants, Gi j are the contravariant metric tensor components in the
undeformed configuration, and gkl and Gkl are covariant metric tensor components in the deformed
and undeformed configurations.

2.2.2. Continuum element made of Mooney–Rivlin material. For the continuum element made of
Mooney–Rivlin material, the expression for S is given as

Si j=2(C1+C2G
klgkl)G

i j−2C2G
ikgklG

l j+(KPEN ln(
√
I3)−2(C1+2C2))g

i j (6)

where C1 and C2 are the Mooney–Rivlin material constants, and gi j are the contravariant metric
tensor components in the deformed configuration. The incompressibility constraint is enforced with
the penalty term KPEN ln(

√
I3) (see [60]). Here I3 is the third invariant of the right Cauchy–Green
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deformation tensor, and KPEN is a penalty parameter determined based on the expression given
in [61] for the bulk modulus:

KPEN= 2(C1+C2)

(1−2�PEN)
(7)

where �PEN (with a value close to 0.50) is the ‘penalty’ Poisson ratio we use in the expression in
place of the actual Poisson ratio.

2.2.3. Continuum element made of Fung material. For the continuum element made of Fung
material, the expression for S is given as

Si j=2D1D2 e
D2(I1−3)Gi j+(KPEN ln(

√
I3)−2D1D2)g

i j (8)

where I1 is the first invariant of the right Cauchy–Green deformation tensor, D1 and D2 are the
Fung material constants and KPEN is defined as

KPEN= 2D1D2

(1−2�PEN)
(9)

3. FINITE ELEMENT FORMULATIONS

3.1. DSD/SST formulation of fluid mechanics

In the DSD/SST method [11–13, 19], the finite element formulation is written over a sequence
of N space–time slabs Qn , where Qn is the slice of the space–time domain between the time
levels tn and tn+1. At each time step, the integrations are performed over Qn . The space–time
finite element interpolation functions are continuous within a space–time slab, but discontinuous
from one space–time slab to another. The notations (·)−n and (·)+n will denote the function values
at tn as approached from below and above. Each Qn is decomposed into elements Qe

n , where
e=1,2, . . . , (nel)n . The subscript n used with nel is for the general case where the number of
space–time elements may change from one space–time slab to another. The essential and natural
boundary conditions are enforced over (Pn)g and (Pn)h , the complementary subsets of the lateral
boundary of the space–time slab. The finite element trial function spaces (Sh

u)n for velocity and
(Sh

p)n pressure, and the test function spaces (Vh
u)n and (Vh

p)n=(Sh
p)n are defined by using,

over Qn , first-order polynomials in space and time.
The DSD/SST formulation (from [19]) is expressed as follows: given (uh)−n , find uh ∈(Sh

u)n

and ph ∈(Sh
p)n such that ∀wh ∈(Vh

u)n and ∀qh ∈(Vh
p)n:∫

Qn

wh ·�
(

�uh

�t
uh ·∇uh−fh

)
dQ+

∫
Qn

e(wh) :r(ph,uh)dQ

−
∫

(Pn)h
wh ·hh dP+

∫
Qn

qh∇ ·uh dQ+
∫

�n

(wh)+n ·�((uh)+n −(uh)−n )d�
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+
(nel)n∑
e=1

∫
Qe
n

1

�

[
�SUPG�

(
�wh

�t
+uh ·∇wh

)
+�PSPG∇qh

]
·
[
Ł(ph,uh)−�fh

]
dQ

+
(nel)n∑
e=1

∫
Qe
n

�LSIC∇ ·wh�∇·uhdQ=0 (10)

where

Ł(qh,wh)=�

(
�wh

�t
+uh ·∇wh

)
−∇·r(qh,wh) (11)

This formulation is applied to all space–time slabs Q0,Q1,Q2, . . . ,QN−1, starting with (uh)−0 =
u0. Here �SUPG, �PSPG and �LSIC are the SUPG, PSPG and LSIC (least-squares on incompress-
ibility constraint) stabilization parameters. There are various ways of defining these stabilization
parameters. Here we provide the definitions given in [19]:

�SUPG=
(

1

�2SUGN12
+ 1

�2SUGN3

)−1/2
(12)

�SUGN12=
( nen∑

a=1

∣∣∣∣�Na

�t
+uh ·∇Na

∣∣∣∣
)−1

(13)

�SUGN3= h2RGN
4�

(14)

hRGN=2
( nen∑

a=1
|r ·∇Na|

)−1
(15)

r= ∇‖uh‖
‖∇‖uh‖‖ (16)

�PSPG=�SUPG (17)

and in [53]:
�LSIC=�SUPG ‖uh−vh‖2 (18)

where nen is the number of (space–time) element nodes and Na is the space–time shape function
associated with the space–time node a. As an alternative to the construction of �SUPG as given
by Equations (12)–(13), we proposed in [53] the option of constructing �SUPG based on separate
definitions for the advection-dominated and transient-dominated limits:

�SUPG=
(

1

�2SUGN1
+ 1

�2SUGN2
+ 1

�2SUGN3

)−1/2
(19)

�SUGN1=
( nen∑

a=1
|(uh−vh) ·∇Na|

)−1
(20)
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�SUGN2= �t

2
(21)

where vh is the mesh velocity. It was noted in [53] that separating �SUGN12 into its advection-
dominated and transient-dominated components as given by Equations (20)–(21) is equivalent to
excluding the (�Na/�t |n) part of (�Na/�t) in Equation (13), making that the definition for �SUGN1,
and accounting for (�Na/�t |n) in the definition for �SUGN2 given by Equation (21). Here, n is
the vector of element (parent–domain) coordinates. For more ways of calculating �SUPG, �PSPG and
�LSIC, see [19, 62–64]. References [19, 63, 64] also include the discontinuity-capturing directional
dissipation stabilization, which was introduced as an alternative to the LSIC stabilization.

Remark 1
As an alternative to how the SUPG test function is defined in Equation (10), we proposed in [53] the
SUPG test function option of replacing (�wh/�t+uh ·∇wh) with ((uh−vh) ·∇wh). This replace-
ment is equivalent to excluding the (�wh/�t |n) part of (�wh/�t). In [53], we called this option
‘WTSE’, and the option where the (�wh/�t |n) term is active ‘WTSA’.

Remark 2
With the function spaces defined in the paragraph preceding Equation (10), for each space–time slab
velocity and pressure assume double unknown values at each spatial node. One value corresponds
to the lower end of the slab, and the other one to the upper end. In [53], the option of using double
unknown values at a spatial node is called ‘DV’ for velocity and ‘DP’ for pressure. In this case, as
it was pointed out in [53], we use two integration points over the time interval of the space–time
slab, and this time-integration option is called ‘TIP2’. This version of the DSD/SST formulation,
with the options set DV, DP and TIP2, is called ‘DSD/SST-DP’.

Remark 3
We proposed in [53] the option of using, for each space–time slab, a single unknown pressure value
at each spatial node and called that option ‘SP’. With this, we proposed in [53] another version
of the DSD/SST formulation, where the options set is DV, SP and TIP2, and called that version
‘DSD/SST-SP’. Because the number of unknown pressure values is halved, the computational cost
is reduced substantially.

Remark 4
To reduce the computational cost further, we proposed in [53] the option of using only one
integration point over the time interval of the space–time slab and called that time-integration
option ‘TIP1’. With that, we proposed in [53] a third version of the DSD/SST formulation, where
the options set is DV, SP and TIP1, and called that version ‘DSD/SST-TIP1’.

Remark 5
As a third way of reducing the computational cost, we proposed in [53] the option of using,
for each space–time slab, a single unknown velocity value at each spatial node and called that
option ‘SV’. In the SV option of the two parts of Equation (10), the one generated by (wh)+n is
removed, and we explicitly set (uh)+n =(uh)−n , which makes the velocity field continuous in time.
On the basis of SV option, we proposed in [53] a fourth version of the DSD/SST formulation,
where the options set is SV, SP and TIP1, and called that version ‘DSD/SST-SV’. With this version
of the DSD/SST formulation, we proposed in [53] to use the SUPG test function option WTSE.
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Remark 6
As it was pointed out in [53], versions DSD/SST-TIP1 and DSD/SST-SV render the DSD/SST
versions used earlier obsolete (see Remark 8 in [53]).

3.2. Semi-discrete formulation of structural mechanics

Using yh and wh from appropriately defined trial and test function spaces, respectively, the
semi-discrete finite element formulation of the structural mechanics equations (see [16, 65, 66]) is
expressed as ∫

�s
0

wh ·�s d
2yh

dt2
d�s+

∫
�s
0

wh ·��s
dyh

dt
d�s+

∫
�s
0

�Eh :Sh d�s

=
∫

�s
t

wh ·(th+�sfs)d�s (22)

The fluid mechanics forces acting on the structure are represented by vector th . The above formu-
lation is for structures represented by a membrane model (extending the formulation to structures
represented by a 3D continuum model is described in Section 3.3). The left-hand side terms of
Equation (22) are referred to in the original configuration and the right-hand side terms in the
deformed configuration at time t . From this formulation at each time step we obtain a nonlinear
system of equations. In solving that nonlinear system with an iterative method, we use an incre-
mental form (see [15, 16, 65, 66]), which is expressed as[

M
��t2

+ (1−	)
C
��t

+(1−	)K
]
�di =Ri (23)

Here M is the mass matrix, C is the damping matrix, K is the consistent tangent matrix associated
with the internal elastic forces, Ri is the residual vector at the i th iteration and �di is the i th
increment in the nodal displacements vector d. For spatially constant �, the damping matrix can
be expressed as C=�M. All of the terms known from the previous iteration are lumped into
the residual vector Ri . The parameters 	,�,
 are part of the Hilber–Hughes–Taylor [67] scheme,
which is the time-integration technique used here.

3.3. Stabilized space–time fluid–structure interaction (SSTFSI) technique

The SSTFSI technique was introduced in [53], where it was described based on the finite element
formulations given by Equations (10) and (22), with a slight change in notation and with a
clarification of how the fluid–structure interface conditions are handled. In that notation subscripts
1 and 2 refer to fluid and structure, respectively. Furthermore, while subscript I refers to the
fluid–structure interface, subscript E refers to ‘elsewhere’ in the fluid and structure domains or
boundaries. Here we repeat from [53] the equations representing the SSTFSI technique:∫

Qn

wh
1E ·�

(
�uh

�t
+uh ·∇uh−fh

)
dQ+

∫
Qn

e(wh
1E) :r(ph,uh)dQ

−
∫

(Pn)h
wh
1E ·hh1E dP+

∫
Qn

qh1E∇ ·uh dQ+
∫

�n

(wh
1E)+n ·�((uh)+n −(uh)−n )d�
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+
(nel)n∑
e=1

∫
Qe
n

1

�

[
�SUPG�

(
�wh

1E

�t
+uh ·∇wh

1E

)
+�PSPG∇qh1E

]
·[Ł(ph,uh)−�fh]dQ

+
(nel)n∑
e=1

∫
Qe
n

�LSIC∇·wh
1E�∇ ·uh dQ=0 (24)

∫
Qn

qh1I∇·uh dQ+
(nel)n∑
e=1

∫
Qe
n

1

�
[�PSPG∇qh1I]·[Ł(ph,uh)−�fh]dQ=0 (25)

∫
(�1I)REF

(wh
1I)
−
n+1 ·((uh1I)−n+1−uh2I)d�=0 (26)

∫
(Pn)h

(wh
1I)
−
n+1 ·hh1I dP =−

∫
(Pn)h

(wh
1I)
−
n+1 · pndP+

∫
Qn

2�e((wh
1I)
−
n+1) :e(u)dQ

+
∫
Qn

(wh
1I)
−
n+1 ·∇·(2�e(u))dQ (27)

∫
(�2I )REF

wh
2I ·(hh2I+(hh1I)A+(hh1I)B)d�=0 (28)

∫
(�2)0

wh
2 ·�2

d2yh

dt2
d�+

∫
(�2)0

wh
2 ·��2

dyh

dt
d�+

∫
(�2)0

�Eh :Sh d�

=
∫

�2

wh
2 ·�2fh2 d�+

∫
�2E

wh
2E ·hh2E d�+

∫
�2I

wh
2I ·hh2I d� (29)

Here, (�2I)REF and (�2I)REF represent some reference configurations of �2I and �2I, respectively.
In reconciling the slightly modified notation used here with the notation used in Equations (10)
and (22), we note that �2=�s, fh2= fs, (�2)0=�s

0, �2=�s
t , and �2I and �2E indicate the partitions

of �2 corresponding to the interface and ‘elsewhere’. We also note that hh2I= th , and (hh1I)A and
(hh1I)B represent the values of hh1I associated with the fluid surfaces above and below the membrane
structure. The symbol hh2E denotes the prescribed external forces acting on the structure in �2E,
which is separate from fh2. In this formulation, (uh1I)

−
n+1, h

h
1I and hh2I (the fluid velocity, fluid stress

and structural stress at the interface) are treated as separate unknowns, and Equations (26), (27) and
(28) can be seen as equations corresponding to these three unknowns, respectively. The structural
displacement rate at the interface, uh2I, is derived from yh .

The formulation above is based on allowing for cases when the fluid and structure meshes
at the interface are not identical. If they are identical, as it was pointed out in [53], the same
formulation can still be used. Also as it was pointed out in [53], if the structure is represented
by a 3D continuum model instead of a membrane model, the formulation above would still be
applicable if the domain integrations over �2E and �2I in the last two terms of Equation (29)
are converted to boundary integrations over �2E and �2I. In such cases, hh2E would represent the
prescribed forces acting ‘elsewhere’ on the surface of the structure.
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It was noted in [53] that, for constant viscosity, the term ∇ ·(2�e(u)) in Equation (27) vanishes
for tetrahedral elements and in most cases can be neglected for hexahedral elements. It was further
noted in [53] that the same statement can be made also in the context of that term being a part of
the expression Ł(ph,uh) appearing in Equations (24) and (25).

Remark 7
In [53], the versions of the SSTFSI method corresponding to the DSD/SST-DP, DSD/SST-SP,
DSD/SST-TIP1 and DSD/SST-SV formulations (see Remarks 2–5) were called ‘SSTFSI-DP’,
‘SSTFSI-SP’, ‘SSTFSI-TIP1’ and ‘SSTFSI-SV’, respectively.

Remark 8
As it was pointed out in [53], versions SSTFSI-TIP1 and SSTFSI-SV render the SSTFSI versions
used earlier obsolete (see Remark 12 in [53]).

3.4. Mesh update methods

The mesh update methods, and related techniques, developed by the T�AFSM to be used in
conjunction with the DSD/SST formulation were described in a Section in [53]. The section
includes references to a number of articles where these methods and techniques were described
in detail (see [11, 25, 36, 50, 51, 68–74]), as well as references to related methods developed by
other researchers (see [75–77]).

3.5. Solution of the fully discretized coupled equations

Full discretization of the FSI formulation described in Section 3.3 leads to coupled, nonlinear equa-
tion systems that need to be solved at every time step. The techniques developed by the T�AFSM
for that purpose were described in a section in [53]. The section includes references to a number
of articles where related techniques were described in detail (see [22, 29, 30, 52, 63, 78–81]), as
well as references to related methods developed by other researchers (see [82–84]).

3.6. Segregated equation solvers

The iterative solution approaches needed in arterial fluid mechanics computations, especially with
the long computational domains inherent to such computations, are expected to benefit significantly
from advanced segregated equation solvers. A recent demonstration of this potential can be found
in [85, 86]. Segregated equation solver techniques recently developed by the T�AFSM for FSI
computations were described in a section in [53]. The section includes references to earlier articles
describing related techniques and applications (see [11, 46, 47, 87–90]).

4. ESTIMATED ZERO-PRESSURE ARTERIAL GEOMETRY

In [8], what was used as the arterial geometries corresponding to zero blood pressure were close
approximations to patient-specific image-based geometries extracted from computed tomography
models. Here, we take a more realistic approach by recognizing that such image-based geometries
should be used as arterial geometries corresponding to time-averaged pressure values. We use
a rudimentary technique to estimate the zero-pressure arterial geometry. This concept was first
introduced in [57].
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To explain the concept more, we use as example one of the test cases computed in [8]. The
test case was ‘middle cerebral artery with aneurysm—single-artery segment’, with normal blood
pressure (NBP) in an artery segment with uniform wall thickness. The arterial geometry used was a
close approximation to the patient-specific image-based geometry used in [7]. The geometry used
in [7] was extracted from the computed tomography model of a segment of the middle cerebral
artery of a 57-year-old male with aneurysm. The nominal value of the arterial diameter was 3.0mm,
with an assumed wall thickness of 0.3mm. In the test computations reported in [8], the image-
based geometry (with nominal diameter 3.0mm) was used as the arterial geometry corresponding
to zero blood pressure. However, it is more realistic to use that image-based geometry as the
arterial geometry corresponding to the time-averaged value of the blood pressure. Given that arterial
geometry at the time-averaged pressure value, an estimated arterial geometry corresponding to
zero blood pressure needs to be constructed.

We estimate the zero-pressure arterial geometry in conjunction with an arterial structural model
based on the continuum element made of hyperelastic (Fung) material. We use an estimated
configuration for the zero-pressure geometry and try different values for the zero-pressure wall
thickness until the arterial geometry we obtain with the time-averaged pressure value has the same
diameter and wall thickness as the approximate image-based geometry. We realize that we are
matching only two of the parameters that represent the image-based geometry, but considering that
a full matching would be quite challenging, we feel that our rudimentary technique is a good start
in estimating the zero-pressure arterial geometry. The first test computation we report in Section 8,
namely ‘middle cerebral artery with aneurysm—single-artery segment’, is based on this concept.

5. FLUID AND STRUCTURE PROPERTIES AND BOUNDARY CONDITIONS

5.1. Fluid and structure properties

As it was done for the computations reported in [1, 2, 4, 5, 7, 10], the blood is assumed to behave
like a Newtonian fluid (see Section 2.1). The density and kinematic viscosity are set to 1000kgm−3
and 4.0×10−6m2 s−1. The material density of the arterial wall is known to be close to that of the
blood and therefore set to 1000kgm−3. The stiffness values used for the arteries are comparable
with those used in [1, 2, 4, 5, 7, 10], where the values used were determined (see [7]) by comparison
with experimental values. The stiffness value used in each test case is given in the individual
description of that test case. Arteries are surrounded by tissues, and we expect those tissues to have
a damping effect on the structural dynamics of the arteries. Therefore, we add a mass-proportional
damping, which also helps in removing the high-frequency modes of the structural deformation.
The damping coefficient � used in each case is given in the individual description of that case.

5.2. Boundary conditions

In all the test cases computed, we have a single inflow boundary where we specify the velocity
profile as a function of time. The profile is similar to the one obtained by using the Womer-
sley solution of a pulsating flow [91]. At the outflow boundaries, we specify traction boundary
conditions. In test cases with two outflow boundaries, we specify the same condition for both.
The traction boundary condition is based on the pressure profile applicable to the case computed.
The pressure profile, as a function of time, is obtained from an approximate solution [4] of the
Windkessel model [92]. The parameters in the Windkessel model are set in such a way that the
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range for the pressure profile is approximately from 80 to 120mmHg for NBP and from 100 to
170mmHg for high blood pressure (HBP). On the arterial walls, we specify no-slip boundary
conditions for the flow. In the structural mechanics part, as a boundary condition at the ends of
the arteries, for computations with the membrane element we set the displacement to zero. For
computations with the continuum element, we set the normal component of the displacement to
zero.

6. SIMULATION SEQUENCE

In most of the simulations carried out by the T�AFSM, the FSI computations are preceded by
a set of pre-FSI computations that provide us a good starting point for the FSI computations.
These pre-FSI computations include the fluid-only and structure-only computations. We have two
options for the pre-FSI generation of the fluid mesh. We can generate it by starting with a mesh
corresponding to the initial shape of the structure and updating it as the structure-only computation
proceeds, or generate it after the structure-only computation is completed. We built two simulation
sequences that were used in the computations reported here. Our experience with the first one
helped us design the second one.

6.1. Fluid→structure→FSI (F→S→FSI) sequence

Step 1: Generate the fluid and structure meshes based on the shape of the unstressed structure.
Step 2: Compute a developed flow field while holding the structure rigid.

• The outflow traction is set to a value close to 80mmHg for NBP and 100mmHg for HBP.
• The inflow velocity is set to a value corresponding to the outflow traction.

Step 3: Compute the structural deformation, with the fluid stresses at the interface held steady
at their values from Step 2, and simultaneously update the fluid mesh.

• Structural deformation can be determined with a steady-state computation or a time-dependent
computation that eventually yields a steady-state solution.
• For the steady-state computation, �t→∞ and 	=0 in Equation (23) in [53], the number of
time steps is 1, and the initial displacement, velocity and acceleration are set to zero.
• The mesh quality obtained with the time-dependent computation is better than the one
obtained with the steady-state computation.

Step 4: Compute the FSI with the inflow and outflow conditions held steady at the values used
in Step 2.

• Sometimes, to prevent a sudden increase in the structural acceleration at the start of this step,
it may be necessary to begin with an increased structural mass that would later be decreased
back to its actual value. An unrealistically large acceleration can initiate an instability that is
subsequently magnified.

Step 5: Compute the FSI with the inflow and outflow conditions pulsating.

6.2. Structure→fluid→FSI (S→F→FSI) sequence

Analysis of the results obtained with the F→S→FSI sequence revealed that the fluid pressure
is spatially almost uniform. Even when the outflow traction is pulsating, although the pressure
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changes as a function of time, spatially it remains nearly uniform. The S→F→FSI sequence was
built based on these considerations.

Step 1: Generate the structure mesh based on the shape of the unstressed structure.
Step 2: Compute the structural deformation with a uniform fluid pressure held steady at a value

close to 80mmHg for NBP and 100mmHg for HBP.

• The structural deformation can be computed, as how it was done at Step 3 of the F→S→FSI
sequence, with a steady-state computation or a time-dependent computation that eventually
yields a steady-state solution.

Step 3: Generate the fluid mesh based on the shape of the deformed structure.
Step 4: Compute a developed flow field while holding the structure from Step 2 rigid.

• The outflow traction is set to a value close to 80mmHg for NBP and 100mmHg for HBP.
• The inflow velocity is set to a value corresponding to the outflow traction.

Step 5: Continue from Step 4 of the F→S→FSI sequence.

7. SEQUENTIALLY COUPLED ARTERIAL FSI TECHNIQUE

The SCAFSI technique was first proposed in [58] as an approximate FSI approach in arterial
fluid mechanics. In the SCAFSI technique, first we compute a ‘reference’ (i.e. ‘base’) arterial
deformation as a function of time, driven only by the blood pressure, which is given as a function of
time by specifying the pressure profile in a cardiac cycle. Then, we compute a sequence of updates
involving mesh motion, fluid dynamics calculations and recomputing the arterial deformation.

Step 1: Compute the ‘reference’ arterial displacement (YR)n (n=1,2, . . . ,nts), driven
only by the blood pressure pR(t), which is given by specifying the pressure profile in a
cardiac cycle. In moving from time level n to n+1, we propose the following options
for the predictor ((YR)n+1)0: (YR)n,2(YR)n−(YR)n−1,3(YR)n−3(YR)n−1+(YR)n−2 and
(YR)n+((YR)n−(YR)n−1)/(pR(tn)− pR(tn−1))(pR(tn+1)− pR(tn)). Let (PR)n denote the vector
of nodal values of pressure where every nodal value is equal to pR(tn), and let (HR)n denote the
interface stress associated with that.

Step 2: Given the displacements from Step 1, compute the ‘reference’ mesh motion (XR)n
(n=1,2, . . . ,nts). At each time level n+1, in computing (XR)n+1, as the initial guess ((XR)n+1)0,
we consider the option ((XR)n+1)0=0 and the options we had for ((YR)n+1)0 in Step 1.

Step 3: Given the displacements and mesh motion from Steps 1 and 2, for zero-stress conditions
at the outflow boundaries, compute the time-dependent flow field and the corresponding interface
stress vector (H1)n (n=1,2, . . . ,nts). At each time level n+1, in computing the flow field, as the
initial guess for pressure, we consider the following options for ((P1)n+1)0: (P1)n , 2(P1)n−(P1)n−1
and 3(P1)n−3(P1)n−1+(P1)n−2. To enhance the stability of the computation in Step 4, we propose
to smoothen (H1)n with the following time-averaging formula:

(H1)n←�0(H1)n

+�±1((H1)n+1+(H1)n−1)+�±2((H1)n+2+(H1)n−2)

+�±3((H1)n+3+(H1)n−3)+�±4((H1)n+4+(H1)n−4) (30)
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For the time-averaging weights, we propose the options (�0,�±1,�±2,�±3,�±4)= 1
9 (3,2,1,0,0),

1
16 (4,3,2,1,0) and

1
25 (5,4,3,2,1). Now the total interface stress is Hn=(HR)n+(H1)n .

Step 4: With the updated interface stresses from Step 3, compute the updated arterial displacement
Yn (n=1,2, . . . ,nts). At each time level n+1, in computing Yn+1, as the predictor, we propose
(Yn+1)0=(YR)n+1+((Y1)n+1)0. Here the displacement increment is defined as (Y1)n=Yn−
(YR)n , and based on that definition, for ((Y1)n+1)0 we consider the options we had for ((P1)n+1)0
in Step 3.

Step 5: Compute the updated mesh motion Xn (n=1,2, . . . ,nts). At each time level n+1, in
computing Xn+1, as the initial guess (Xn+1)0, we consider the options (Xn+1)0=0 and (Xn+1)0=
(XR)n+1+((X1)n+1)0. Here the mesh-motion increment is defined as (X1)n=Xn−(XR)n , and
based on that definition, for ((X1)n+1)0 we consider the option ((X1)n+1)0=0 and the options we
had for ((P1)n+1)0 in Step 3.

Step 6: Given the displacements and mesh motion from Steps 4 and 5, for zero-stress conditions
at the outflow boundaries, compute the time-dependent flow field and the corresponding interface
stress vector (H2)n (n=1,2, . . . ,nts). At each time level n+1, in computing the flow field, as the
initial guess for pressure, we consider for ((P2)n+1)0 the options we had for ((P1)n+1)0 in Step 3
and the option ((P2)n+1)0=(P1)n+1. Now the total interface stress is Hn=(HR)n+(H2)n .

8. TEST COMPUTATIONS

All computations were carried out in a parallel computing environment using PC clusters. The
meshes were generated on a single node of the cluster used. In all cases computed, the fluid and
structure meshes are compatible at the fluid–structure interface. All computations were completed
without any remeshing. In all cases, the fully discretized, coupled fluid and structural mechanics
and mesh-moving equations were solved with the quasi-direct coupling technique (see Section 5.2
in [53]). In solving the linear equation systems involved at every nonlinear iteration, the GMRES
search technique [82] was used with a diagonal preconditioner.

8.1. Middle cerebral artery with aneurysm—single-artery segment

The arterial geometry is from [8]. It is a close approximation to the patient-specific image-based
geometry used in [7]. The geometry used in [7] was extracted from the computed tomography
model of a segment of the middle cerebral artery of a 57-year-old male with aneurysm. The
diameter and length of the artery are 3.0 and 15mm, and the size of the aneurysm is 6mm. The
volumetric inflow rate used is also a close approximation to the one used in [7], which can be
found in [4, 5]. More specifically, our inflow profile was generated by digitizing the data published
in [4, 5]. The problem geometry and the pulsating inflow velocity profile as a function of time are
shown in Figures 1 and 2.

The test computation is carried out for NBP. Figure 3 shows the NBP profile (together with the
HBP profile), which was calculated in the way described in Section 5.2. The traction condition
at the outflow boundary is based on this pressure profile. The arterial wall is modeled with the
continuum element made of hyperelastic (Fung) material. The wall thickness for the artery is
0.3mm. The Fung material constants D1 and D2 (from [93]) and the penalty Poisson ratio are
2.6447×103Nm−2, 8.365 and 0.45, respectively.
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Figure 1. Middle cerebral artery with aneurysm—single-artery segment. Problem geometry.
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Figure 2. Middle cerebral artery with aneurysm—single-artery segment. Pulsating inflow velocity.

We perform this test computation with the ‘estimated zero-pressure arterial geometry’ as
described in Section 4. The time-averaged value of the blood pressure (see Section 4 for its
significance), obtained by averaging over a cardiac cycle, is 91.7mmHg.
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Figure 3. Middle cerebral artery with aneurysm—single-artery segment. Normal and high blood pressure
(NBP and HBP) profiles.
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Figure 4. Middle cerebral artery with aneurysm—single-artery segment. Computed
with the continuum element made of hyperelastic (Fung) material. Verification of
mass balance. Volumetric inflow rate, difference between the volumetric inflow and

outflow rates, and rate of change of the artery volume.

The meshes are from [8]. The mesh for the artery consists of 13 332 nodes and 52 944 four-node
tetrahedral elements, with 4444 nodes and 8824 three-node triangular elements on the fluid–
structure interface. The fluid mechanics mesh contains 9568 nodes and 43 960 four-node tetrahedral
elements. The computations are carried out with the SSTFSI-TIP1 technique (see Remarks 4 and 7)
and the SUPG test function option WTSA (see Remark 1). The stabilization parameters used are
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Figure 5. Middle cerebral artery with aneurysm—single-artery segment. Computed with the continuum
element made of hyperelastic (Fung) material. Velocity and pressure profiles showing the instants for

which the flow field is displayed in Figure 6.

those given by Equations (12)–(18). The damping coefficient � is set to 1.5×104 s−1. The time-step
size is 3.333×10−3 s. The number of nonlinear iterations per time step is 7, and the number of
GMRES iterations per nonlinear iteration is 200.

Remark 9
We realize that using tetrahedral elements for structures represented by a 3D continuum model
may not be the best choice, especially for thin structures. We intend to explore better ways of
modeling the arterial walls, including the methods described in [94].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:601–629
DOI: 10.1002/fld



618 T. E. TEZDUYAR ET AL.

Figure 6. Middle cerebral artery with aneurysm—single-artery segment. Computed with the
continuum element made of hyperelastic (Fung) material. Flow field at the instants shown in

Figure 5. Velocity vectors colored by magnitude.

We use the ‘selective scaling’ technique (see Remark 14 in [53]) to dynamically shift the
emphasis between the fluid and structure parts. The scales used for the fluid and structure parts at
each nonlinear iteration of a time step are given below:

Iteration 1: fluid scale=1.00, structure scale=1.0×10−1.
Iteration 2: fluid scale=1.00, structure scale=1.0×10−2.
Iteration 3: fluid scale=1.00, structure scale=1.0×10−3.
Iteration 4: fluid scale=1.00, structure scale=1.0×10−4.
Iterations 5–7: fluid scale=1.00, structure scale=1.0×10−5.

The S→F→FSI sequence is used in the computation.
We achieve good mass balance. We verify the mass balance by comparing the rate of change

for the artery volume and the difference between the volumetric inflow and outflow rates. Figure 4
shows the mass balance. Figures 5 and 6 illustrate the flow field at some specific instants, including
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Figure 7. Middle cerebral artery with aneurysm—bifurcating-artery segment. Problem geometry.
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Figure 8. Middle cerebral artery with aneurysm—bifurcating-artery segment. Verification
of mass balance. Volumetric inflow rate, difference between the volumetric inflow and

outflow rates, and rate of change of the artery volume.

the instants when the inflow velocity is maximum and when the pressure is at its primary and
secondary peak values.
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Figure 9. Middle cerebral artery with aneurysm—bifurcating-artery segment. Flow field at approximately
the same instants as those marked in Figure 5. Velocity vectors colored by magnitude.

Remark 10
We believe that the refinement level of the fluid mechanics meshes we are currently using is
sufficient to accurately represent the general trends of the FSI involved in this class of problems.
However, more refined meshes are needed for more accurately representing other aspects of these
problems, such as the wall shear stress. This will be one of our objectives in our future studies.

8.2. Middle cerebral artery with aneurysm—bifurcating-artery segment

The arterial geometry is from [8]. It is a close approximation to the patient-specific image-based
geometry used in [5, 7]. The geometry used in [5, 7] was extracted from the computed tomography
model of a segment of the middle cerebral artery of a 59-year-old female with aneurysm. The
diameter of the artery segment is 3.0mm at the inflow, and 2.4 and 1.8mm at the two outflow
ends. The problem geometry is shown in Figure 7. The volumetric inflow rate used is also a close
approximation to the one used in [5, 7], which can be found in [4, 5]. The pulsating inflow velocity
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Figure 10. Abdominal aortic aneurysm. Problem geometry.
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Figure 11. Abdominal aortic aneurysm. Verification of mass balance. Volumetric inflow rate, difference
between the volumetric inflow and outflow rates, and rate of change of the artery volume.

profile as a function of time is the same as that shown in Figure 2 in Section 8.1. The traction
condition at the outflow boundary is based on the NBP profile shown in Figure 3 in Section 8.1.
The structural model is based on the membrane element. The wall thickness, stiffness and Poisson’s
ratio for the artery are 0.3mm, 5.0×105Nm−2 and 0.45, respectively.

The meshes are from [8]. The mesh for the artery consists of 6119 nodes and 12 150 three-
node triangular elements. The fluid mechanics mesh contains 14 410 nodes and 66 440 four-
node tetrahedral elements. The computation is carried out with the SSTFSI-TIP1 technique (see
Remarks 4 and 7) and the SUPG test function option WTSA (see Remark 1). The stabilization
parameters used are those given by Equations (12)–(18). The damping coefficient � is set to
6.0×103 s−1. The time-step size is 6.666×10−3 s. The number of nonlinear iterations per time
step is 5, and the number of GMRES iterations per nonlinear iteration is 150. The F→S→FSI
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Figure 12. Abdominal aortic aneurysm. Flow field at approximately the same instants as those marked in
Figure 5. Velocity vectors colored by magnitude.

sequence is used in the computations. Figure 8 shows the mass balance, and Figure 9 shows the
flow field at approximately the same instants as those marked in Figure 5.

8.3. Abdominal aortic aneurysm

The arterial geometry is from [8]. It was created by making use of the image data found in [95, 96],
with the arterial diameter and wall thickness coming from [97, 98]. The diameter of the artery
segment is 3 cm at the inflow and 2 cm at the two outflow ends. The length is 14 cm and the size of
the aneurysm is 6 cm. The problem geometry is shown in Figure 10. The pulsating inflow velocity
profile as a function of time is not shown here but has the same form as that shown in Figure 2 in
Section 8.1. The minimum and maximum values are 0.13 and 1.13ms−1. The maximum value is
based on the data found in [99]. The traction condition at the outflow boundaries is based on a NBP
profile calculated in the way described in Section 5.2. That pressure profile is similar to the NBP
profile given in Figure 3 in Section 8.1. The structural model is based on the membrane element.
The wall thickness, stiffness and Poisson’s ratio for the artery are 2.3mm, 1.0×106Nm−2 and
0.45, respectively.
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Figure 13. Abdominal aortic aneurysm. Computed with the SCAFSI technique. Verification
of mass balance. Volumetric inflow rate, difference between the volumetric inflow and

outflow rates and rate of change of the artery volume.
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Figure 14. Abdominal aortic aneurysm. Comparison between the SCAFSI and
CAFSI techniques. Arterial volume.

The meshes are from [8]. The mesh for the artery consists of 6091 nodes and 12 072 three-
node triangular elements. The fluid mechanics mesh contains 49 826 nodes and 295 687 four-
node tetrahedral elements. The computations are carried out with the SSTFSI-SV technique (see
Remarks 5 and 7) and the SUPG test function option WTSE (see Remark 1). The stabilization
parameters used are those given by Equations (14)–(21). The damping coefficient � is set to
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Figure 15. Abdominal aortic aneurysm. Comparison between the SCAFSI and CAFSI techniques. Normal
component of the interface stress.

5.65×103 s−1. The time-step size is 4.4×10−3 s. The number of nonlinear iterations per time
step is 5, and the number of GMRES iterations per nonlinear iteration is 100. The S→F→FSI
sequence is used in the computations.

Figure 11 shows the mass balance, and Figure 12 shows the flow field at approximately the
same instants as those marked in Figure 5.

We computed this test case also with the SCAFSI technique (see Section 7). The computational
parameters are almost the same as those we used for the fully coupled FSI (CAFSI) technique. The
only differences are in the number of nonlinear iterations per time step, which is now 4, and the
number of GMRES iterations per nonlinear iteration, which is now 25 for the structural mechanics
part and 50 for the fluid mechanics part. The time-averaging weights in Step 3 of Section 7 are
(�0,�±1,�±2,�±3,�±4)= 1

25 (5,4,3,2,1).

Remark 11
SCAFSI, unlike CAFSI, is not a fully coupled algorithm and therefore is underdamped. Because
of that, it is more sensitive to any lack of smoothness in the inflow velocity profile, which was
generated by digitizing the published data (see Section 8.1). To compensate for that, the inflow
velocity profile for SCAFSI was modified very slightly to yield a smoother acceleration. In a way,
this can partially be seen as restoring some of the smoothness lost during the digitization of the
published data.

Figure 13 shows the mass balance obtained from the computation with the SCAFSI technique,
which is quite good. The flow field looks essentially the same as what we displayed in Figure 12
for the CAFSI technique. Figures 14 and 15 show the comparison between the SCAFSI and
CAFSI techniques based on the arterial volume and the normal component of the interface stress,
respectively, and the results are quite close.
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9. CONCLUDING REMARKS

We presented an overview of how we model the arterial fluid mechanics problems with the
stabilized space–time fluid–structure interaction (SSTFSI) technique developed by the T�AFSM.
The SSTFSI technique includes the enhancements introduced recently by the T�AFSM to increase
the scope, accuracy, robustness and efficiency of this class of techniques. The aspects of the FSI
solution process enhanced include the DSD/SST formulation, which now has a number of new
versions that render the earlier versions obsolete. The SSTFSI technique has been supplemented
with a number of special techniques targeting specifically arterial fluid mechanics modeling. These
include using an estimated zero-pressure arterial geometry, a recipe for pre-FSI computations
that improve the convergence of the FSI computations, and the sequentially coupled arterial FSI
(SCAFSI) technique. We need an estimated zero-pressure arterial geometry, because the patient-
specific image-based geometries do not correspond to a zero blood pressure but time-averaged
blood pressure values. The recipe for pre-FSI computations is based on the assumption that the
arterial deformation during a cardiac cycle is driven mostly by the blood pressure. The SCAFSI
technique, introduced as an approximate FSI approach specific to arterial fluid mechanics, is also
based on that assumption. The arterial walls can be modeled with the membrane or continuum
elements, both of which are geometrically nonlinear, and the continuum element is made of
hyperelastic (Fung) material. We presented test computations for cerebral and abdominal aortic
aneurysms. The arterial geometries used in the computations were close approximations to the
patient-specific image-based data. With the test computations presented, we showed that the new
SSTFSI techniques can successfully deal with different types of arterial fluid mechanics problems
and structure models.
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